通知公告
当前位置: 首页 -> 通知公告 -> 正文

理学院学术报告——周金秋博士

发布日期:2025-08-13     点击量:


报告题目:On the number of spanning trees with a perfect matching of a class of split graphs

报告人:周金秋集美大学 博士

报告时间:2025818日(星期 下午16:30-17:00

地点:明理楼426

报告摘要: A spanning tree of a simple graph $G$ is a \textit{matchable spanning tree} if it has a perfect matching of $G$. Let $t'(G):=|\{T: T \mbox{ is a matchable spanning tree of }G\}|$. In 1984, Simion first investigated the enumerative problem concerning matchable spanning trees in the complete graph $K_{2n}$ and proved that $t'(K_{2n})=(2n)^{n-2}(2n)!/n!$. Let $G\vee G'$ be the join of two vertex-disjoint graphs $G$ and $G'$. The paper obtains that $t'(G\vee K_n^c)=(n-1)!\prod_{i=1}^{n-1}(2n+\mu_i(G))$ if $|V(G)|=n$, where $\{\mu_1(G)\geq \mu_2(G)\geq \cdots\geq \mu_{n-1}(G)\geq \mu_{n}(G)=0\}$ is the Laplacian spectrum of $G$, and $K_n^c$ the complement of $K_n$. Moreover, we prove that $t'(K_r\vee K_s^c)=2\times r!(r+s)^{(r-s-2)/2}(2r+s)^{s-1}/[(r-s)/2]!$ if $r\geq s$ and $r\equiv s~(mod~2)$.


报告人简介:

周金秋,女,集美大学在读博士。主要从事图的生成树和完美匹配的计数及其在统计物理中的应用等方面的研究工作。近几年在包括Discrete Applied MathematicsGraph and Combinatorics等多种国际SCI检索的期刊上发表论文6篇。

©2000-2019 江西理工大学版权所有    ICP备05006923号   

江西理工大学