通知公告
当前位置: 首页 -> 通知公告 -> 正文

学术报告

发布日期:2025-07-29     点击量:


报告题目:Card Shuffle groups(卡牌洗牌群)

报告人:夏彬绉(墨尔本大学 高级讲师

报告时间:202589日(星期下午16:00-17:00

地点:明理楼426

报告摘要:Shuffling a deck of cards is often encountered in card tricks. There are a number of questions that may be of concern, such as how a shuffle changes the order of the deck, and how many different orderings can be obtained by shuffling the deck repeatedly. The latter question is to determine the permutation group, called the shuffle group, generated by all the considered shuffles. More precisely, for positive integers $k$ and $n$, the shuffle group $G_{k,kn}$ is generated by the $k!$ permutations of a deck of $kn$ cards performed by cutting the deck into $k$ piles with $n$ cards in each pile, and then perfectly interleaving these cards following certain order of the $k$ piles. The shuffle group $G_{2,2n}$ was completely determined by Diaconis, Graham and Kantor in 1983, and a conjectural classification has been made in the literature for the general $G_{k,kn}$. In this talk, I will report the joint work with Junyang Zhang, Zhishuo Zhang and Wenying Zhu to confirm this conjectural classification.

洗牌是纸牌戏法中常见的一个环节。这里存在一些令人关注的问题,比如洗牌如何改变牌堆的顺序,以及通过反复洗牌可以得到多少种不同的排列方式。后者的问题旨在确定一个置换群,即所谓的洗牌群,该群由所有被考虑的洗牌操作生成。更具体地说,对于正整数k和n,洗牌群G_{k,kn}由k!种排列操作生成,这些操作将一副有kn张牌的牌堆分成k堆,每堆有n张牌,然后按照特定的k堆顺序完美交错排列这些牌。1983年,Diaconis、Graham和Kantor完全确定了洗牌群G_{2,2n},并且在文献中提出了关于一般情况G_{k,kn}的猜想分类。在本次演讲中,我将汇报与Junyang Zhang、Zhishuo Zhang和Wenying Zhu共同完成的工作,以证实这一猜想分类。

报告人简介:

夏彬绉,2009年本科毕业于浙江大学,2014年获得北京大学博士学位。2014-2016年于北京国际数学研究中心从事博士后研究,2016-2017年西澳大利亚大学Research associate,2017年起任职于墨尔本大学,国际组合数学与应用学会(ICA)2017年Kirkman奖获得者。主要研究代数图论、组合学与置换群论,在诸多国际杂志(如Mem Amer Math Soc, Proc Lond Math Soc, J Lond Math Soc, Israel J. Math等)发表论文50余篇。

©2000-2019 江西理工大学版权所有    ICP备05006923号   

江西理工大学